Allylation of Imines with \underline{in} \underline{situ} Generated Allyl Lead Reagents in a PbBr₂/Al/BF₃·OEt₂/Et₂O System

Hideo TANAKA, Shiro YAMASHITA, Youichi IKEMOTO, and Sigeru TORII*

Department of Industrial Chemistry, School of Engineering,

Okayama University, Okayama 700

Reductive addition of allyl bromide to imines has been performed with a combination of a catalytic amount of $PbBr_2$ (0.03-0.1 equiv.) and Al (1 equiv.) in Et₂O containing $BF_3 \cdot OEt_2$ (1.1 equiv).

Among IVB group elements, Si and Sn have attracted much attention as powerful metals for various synthetic purposes, while Pb has been scarcely utilized except for the $Pb(OAc)_4$ -oxidation. In a previous paper, we have reported "Barbier-type" allylation of carbonyl compounds with allyl halides in a $PbBr_2/Al/DMF$ system, demonstrating that the <u>in situ</u> generated allyl lead reagent can be utilized for the synthetic purpose. In the course of the continuing studies, we now found that the <u>in situ</u> generated allyl lead reagent can effect the allylation of imines <u>1</u> in a slightly modified medium (Scheme 1).

The present Pb-promoted allylation of imines $\underline{1}$ is characterized by the exceptionally simple operation compared with the hitherto disclosed allylation of imines $\underline{1}$ with various allyl metals; e.g., allyl boronates, allyl-9-BBN, allyl stannanes, allyl magnesium, and allyl zinc compounds. Thus, only mixing of imines $\underline{1}$ and allyl bromide $\underline{2}$ with a catalytic amount of PbBr₂ (0.03 equiv.) and aluminium foils (1 equiv.) in Et₂O containing BF₃·OEt₂ (1.1 equiv.)⁴⁾ at ambient temperature affords the corresponding homoallylamines $\underline{3}$.

Representative results are shown in Table 1. Allylation of aromatic and aliphatic aldimines $\underline{1a}-\underline{1h}$ proceeds smoothly to afford the corresponding amines $\underline{3a}-\underline{3h}$ in 50-94% yields (entry 1-9), while ketimines derived from acetophenone and cyclohexanone afford no appreciable allylation products. Notably, under similar conditions, benzaldehyde was recovered intact in contrast to the allylation in a $\frac{PbBr_2}{Al}$ mf system.2)

Though details of the mechanism are not clear yet, it is likely that Pb metal

Chemistry Letters, 1987

generated on the aluminium foils plays a significant role in the formation of allyl lead reagents as well as the following reaction with imines $\underline{1}$ since Al alone or Pb(0) plate (99.9% pure) can not effect the allylation at all. Further applications of the unique combination of PbBr₂/Al/BF₃ OEt₂ are in progress.

The present work was partially supported by a Grant-in-Aid for Sientific Research No. 61225018 from the Ministry of Education, Science and Culture.

Table 1.	Allvlation	of	Imines	in	a	PbBr ₂ /Al/BF ₃	OEt.	/Et ₂ O	System ^{a)}

Entry	<u>1</u>	<u>2</u>	Time	Yield ^{b)}	Entry	<u>1</u>	<u>2</u>	Time	Yield ^{b)}
		(equiv.)	h	8			(equiv.)	h	8
1	N 1a	Bn 1.5	10	84	6	N B	1.5 n	8	78
2	<u>1a</u> <u>1a</u> N	2 Bn	7	93°)	-	N/B		F	72
3 C1	1 <u>b</u>	1.5 Bn	10	94	7 /	1 <u>f</u> N E	1.5 Bn	5	72
4 Me	1c	2	15	64 ^{d)}	8	1 <u>g</u>	1.5	5	90
5 MeO	N N	.Bn 2	12	50 ^{d)}	9		3n 1.5	12	53 ^{e)}

a) Unless otherwise noted, reaction was carried out as described in the text. b) Isolated yield after column chromatography (SiO₂, hexane/AcOEt:5/1). c) With 0.1 equiv. of PbBr₂. d) With 2.0 equiv. of BF₃.OEt₂. e) 1,2-Adduct.

References

- 1) P. G. Harrison, "Comprehensive Organometallic Chemistry," ed by G. Wilkinson, Pergamon Press (1982), Vol. 2, p. 629; V. G. K. Das and C. K. Chu, "The Chemistry of the Metal-Carbon Bond," ed by F. R. Hartrey and S. Patai, John Wiley & Sons Ltd. (1985), Vol. 3, p. 1.
- 2) H. Tanaka, S. Yamashita, T. Hamatani, Y. Ikemoto, and S. Torii, Syn. Commun., in press.
- 3) R. W. Hoffman, G. Eicher, and A. Endesfelder, Liebigs Ann. Chem., 1983, 2000; G. E. Keck, and E. J. Enholn, J. Org. Chem., 50, 146 (1985); Y. Yamamoto, S. Nishii, K. Maruyama, T. Komatsu, and W. Ito, J. Am. Chem. Soc., 108, 7778 (1986); and references cited therein.
- 4) Al(O-Pr i) $_{3}$ and Ti(O-Pr i) $_{4}$ can be used in place of BF $_{3}$ OEt $_{2}$ while in the absence of the Lewis acids, imines $\underline{1}$ were recovered.

(Received January 28, 1987)